Neural Aesthetic W3 Class Notes

convolutional neural networks allow you to look for patterns anywhere in the image

Measuring cost

  • look at the shape of the loss function for all combinations of m and b
  • bottom of the “bowl” is the best fit
  • gradient descent
    • start at a random point
    • calculate its gradient (generalization of a slope in multiple dimensions; which direction is the slope going?)
    • go down the gradient until the loss stops decreasing
  • gradient descent for NN
    • backpropagation
    • calculate gradient using chain rule
    • relates the gradient to the individual activations, error is distributed to the weights
    • problem: local minima; no way of finding the global minimum (“batch gradient descent” is not used because of this)
      • how to deal:
        • calculate the gradient on subsets of the dataset: stochastic gradient descent, mini-batch gradient descent
        • momentum: able to roll out of a local minimum to the next
          • Nesterov momentum
        • adaptive methods: AdaGrad, AdaDelta, RMSprop, ADAM (when in doubt, use ADAM)
    • overfitting

Leave a Reply

Your email address will not be published. Required fields are marked *